
1 http://bit.ly/1qiH7aZ

CHAPTER 4

No Texting While Driving

This chapter walks you through the creation of
No Texting While Driving, a “text answering
machine” app that auto-responds to text messages
you receive while you’re driving (or in the office,
etc.), speaks text messages aloud, and even sends
location information as part of the automated text
reply. The app demonstrates how you can control

some of the great features of an Android phone, including SMS texting, text-to-speech,
persistent data, and GPS location sensing.

In January 2010, the United States National Safety Council (NSC) announced the
results of a study that found that at least 28 percent of all traffic accidents—close to
1.6 million crashes every year—are caused by drivers using cell phones, and at least
200,000 of those accidents occurred while drivers were texting.1 As a result, many
states have banned drivers from using cell phones altogether.

http://bit.ly/1qiH7aZ

2 Clive Thompson, “Clive Thompson on Coding for the Masses”, http://wrd.cm/1uT25O5

Figure 4-1. The No Texting While
Driving app

Daniel Finnegan, a student at the University of
San Francisco taking an App Inventor
programming class, came up with an app idea to
help with the driving and texting epidemic. The
app he created, which is shown in Figure 4-1,
responds automatically (and hands-free) to any
text with a message such as “I’m driving right now,
I’ll contact you shortly.”

The app was later extended so that it would
speak the incoming texts aloud and add the
driver’s GPS location to the auto-response text,
and it was turned into a tutorial for the App
Inventor site.

Some weeks after the app was posted on the
App Inventor site, State Farm Insurance created an
Android app called On the Move, which had
similar functionality to No Texting While Driving.

We don’t know if Daniel’s app or the tutorial on the App Inventor site influenced
On the Move, but it’s interesting to consider the possibility that an app created in a
beginning programming course (by a creative writing student, no less!) might have
inspired this mass-produced piece of software, or at least contributed to the
ecosystem that brought it about. It certainly demonstrated how App Inventor has
lowered the barrier of entry so that anyone with a good idea can quickly and
inexpensively turn his idea into a tangible, interactive app. Clive Thompson of Wired
magazine picked up on the novelty and wrote this:

Software, after all, affects almost everything we do. Pick any major problem—global
warming, health care, or, in Finnegan’s case, highway safety—and clever software is part
of the solution. Yet only a tiny chunk of people ever consider learning to write code,
which means we’re not tapping the creativity of a big chunk of society.2

App Inventor is about tapping the creativity Thompson mentions, about opening
up the world of software creation to everyone.

What You’ll Learn
This is a more complex app than those in the previous chapters, so you’ll build it one
piece of functionality at a time, starting with the auto-response message. You’ll learn
about:

60 Chapter 4: No Texting While Driving

Chapter 4, No Texting While Driving

http://wrd.cm/1uT25O5
http://www.statefarm.com/aboutus/newsroom/20100819.asp

• The Texting component for sending texts and processing received texts.

• An input form for submitting the custom response message.

• The TinyDB database component for saving the customized message even after
the app is closed.

• The Screen.Initialize event for loading the custom response when the app
launches.

• The TextToSpeech component for speaking texts aloud.

• The LocationSensor component for reporting the driver’s current location.

Getting Started
Open your brower to the App Inventor website and start a new project. Name it
“NoTextingWhileDriving” (remember, project names can’t have spaces) and set the
screen’s title to “No Texting While Driving”. Then, click Connect and set up live testing
on your device or the emulator.

Designing the Components
The user interface for the app is relatively simple: it has a label instructing the user
how the app works, a label that displays the text that is to be automatically sent in
response to incoming texts, a text box for changing the response, and a button for
submitting the change. You’ll also need to drag in a Texting component, a TinyDB
component, a TextToSpeech component, and a LocationSensor component, all of
which will appear in the “Non-visible components” area. You can see how this should
look in the snapshot of the Component Designer in Figure 4-2.

61Getting Started

Getting Started

Figure 4-2. The No Texting While Driving app in the Component Designer

You can build the user interface shown in Figure 4-2 by dragging out the
components listed in Table 4-1.

Table 4-1. All of the components for the No Texting app

Component type Palette group What you’ll name it Purpose

Label User Interface PromptLabel Let the user know how the app works.

Label User Interface ResponseLabel
The response that will be sent back to the
sender.

TextBox User Interface newResponseTextBox The user will enter the custom response here.

Button User Interface SubmitResponseButton The user clicks this to submit response.

Texting Social Texting1 Process the texts.

TinyDB Storage TinyDB1 Store the response in the database.

TextToSpeech Media TextToSpeech1 Speak the text aloud.

LocationSensor Sensors LocationSensor1 Sense where the device is.

Set the properties of the components in the following way:

62 Chapter 4: No Texting While Driving

Chapter 4, No Texting While Driving

• Set the Text of PromptLabel to “The text below will be sent in response to all
SMS texts received while this app is running.”

• Set the Text of ResponseLabel to “I’m driving right now, I’ll contact you
shortly.” Check its boldness property.

• Set the Text of NewResponseTextbox to “ ”. (This leaves the text box blank for the
user’s input.)

• Set the Hint of NewResponseTextbox to “Enter new response text”.

• Set the Text of SubmitResponseButton to “Modify Response”.

Adding Behaviors to the Components
You’ll start by programming the autoresponse behavior in which a text reply is sent to
any incoming text. You’ll then add blocks so that the user can specify a custom
response and save that response persistently. Finally, you’ll add blocks that read the
incoming texts aloud and add location information to the auto-response texts.

AUTO-RESPONDING TO A TEXT

For the auto-response behavior, you’ll use App Inventor’s Texting component. You
can think of this component as a little person inside your phone who knows how to
read and write texts. For reading texts, the component provides a
Texting.MessageReceived event block. You can drag this block out and place blocks
inside it to show what should happen when a text is received. In the case of this app,
we want to automatically send back a text in response.

You can send a text with three blocks. First, you set the phone number to which
the text should be sent, which is a property of the Texting1 component. Next, you set
the message to be sent, also a property of Texting1. Finally, you actually send the text
with the Texting1.SendMessage block. Table 4-2 lists all the blocks you’ll need for this
auto-response behavior, and Figure 4-3 shows how they should look in the Blocks
Editor.

Table 4-2. The blocks for sending an auto-response

Block type Drawer Purpose

Texting1.MessageReceived Texting The event handler that is triggered when the phone
receives a text.

set Texting1.PhoneNumber to Texting Set the PhoneNumber property before sending.

value number Drag from when block The phone number of the person who sent the text.

63Adding Behaviors to the Components

Adding Behaviors to the Components

Block type Drawer Purpose

set Texting1.Message to Texting Set the Message property before sending.

ResponseLabel.Text ResponseLabel The message the user has entered.

Texting1.SendMessage Texting Send the message.

Figure 4-3. Responding to an incoming text

How the blocks work

When the phone receives a text message, the Texting1.MessageReceived event is
triggered. The phone number of the sender is in the argument number, and the
message received is in the argument messageText.

As the auto-response text should be sent back to the
sender, Texting. PhoneNumber is set to number. Texting.Message is set
to ResponseLabel.Text, which is what you typed while in the Designer: “I’m driving
right now, I’ll contact you shortly.” When these are set, the app calls
Texting.SendMessage to actually send the response.

Test your app You’ll need two phones to test this behavior, one
to run the app and one to send the initial text. If you don’t
have a second phone handy, you can use Google Voice or a
similar service on your computer and send texts from that
service to the phone running the app. After you set things up,
send a text to the phone running the app. Does the first phone
receive the response text?

64 Chapter 4: No Texting While Driving

Chapter 4, No Texting While Driving

ENTERING A CUSTOM RESPONSE

Next, let’s add blocks so the user can enter her own custom response. In the
Component Designer, you added a TextBox component named NewResponseTextbox;
this is where the user will type the custom response. When the user clicks on the
SubmitResponseButton, you need to copy the entry (NewResponseTextbox) into the
ResponseLabel, which is used to respond to texts. Table 4-3 lists the blocks you’ll need
for transferring a newly entered response into the ResponseLabel.

Table 4-3. Blocks for displaying the custom response

Block type Drawer Purpose

SubmitResponseButton.Click SubmitResponseButton The user clicks this button to submit a new
response message.

set ResponseLabel.Text to ResponseLabel Move (set) the newly input value to this label.

NewResponseTextbox.Text NewResponseTextbox The user has entered the new response here.

set NewResponseTextbox.Text to NewResponseTextbox Blank out the text box after transferring
information

text (“”) Text The empty text.

How the blocks work

Think of how you interact with a typical input form: you first type something in a text
box and then click a submit button to signal the system to process it. The input form
for this app is no different. Figure 4-4 shows how the blocks are programmed so that
when the user clicks the SubmitResponseButton, the SubmitResponseButton.Click
event is triggered.

Figure 4-4. Setting the response to the user’s entry

65Adding Behaviors to the Components

Adding Behaviors to the Components

The event handler in this case copies (or, in programming terms, sets) what the user
has entered in NewResponseTextbox into the ResponseLabel. Recall that ResponseLabel
holds the message that will be sent out in the auto-response, so you want to be sure
to place the newly entered custom message there.

Test your app Enter a custom response and submit it, and then
use the second phone to send another text to the phone
running the app. Was the custom response sent?

STORING THE CUSTOM RESPONSE PERSISTENTLY

Your user can now customize the auto-response, but there is one catch: if the user
enters a custom response and then closes the app and relaunches it, the custom
response will not appear (instead, the default response will). This behavior is not what
your users will expect; they’ll want to see the custom response they entered when
they restart the app. To make this happen, you need to store that custom response
persistently.

Placing data in the ResponseLabel.Text property is technically storing it, but the
issue is that data stored in component properties is transient data. Transient data is
like your short-term memory; the phone “forgets” it as soon as an app closes. If you
want your app to remember something persistently, you have to transfer it from short-
term memory (a component property or variable) to long-term memory (a database
or file).

To store data persistently in App Inventor, you use the TinyDB component, which
stores data in a file on the Android device. TinyDB provides two functions: StoreValue
and GetValue. With the former, the app can store information in the device’s database,
whereas with the latter, the app can retrieve information that has already been stored.

For many apps, you’ll use the following scheme:

1. Store data to the database each time the user submits a new value.

2. When the app launches, load the data from the database into a variable or
property.

You’ll start by modifying the SubmitResponseButton.Click event handler so that it
stores the data persistently, using the blocks listed in Table 4-4.

Table 4-4. Blocks for storing the custom response with TinyDB

Block type Drawer Purpose

TinyDB1.StoreValue TinyDB1 Store the custom message in the phone’s database.

66 Chapter 4: No Texting While Driving

Chapter 4, No Texting While Driving

Block type Drawer Purpose

text (“responseMessage”) Text Use this as the tag for the data.

ResponseLabel.Text ResponseLabel The response message is now here.

How the blocks work

This app uses TinyDB to take the text it just put in ResponseLabel and store it in the
database. As shown in Figure 4-5, when you store something in the database, you
provide a tag with it; in this case, the tag is “responseMessage.” Think of the tag as the
name for the data in the database; it uniquely identifies the data you are storing. As
you’ll see in the next section, you’ll use the same tag (“responseMessage”) when you
load the data back in from the database.

Figure 4-5. Storing the custom response persistently

RETRIEVING THE CUSTOM RESPONSE WHEN THE APP OPENS

The reason for storing the custom response in the database is so that it can be loaded
back into the app the next time the user opens it. App Inventor provides a special
event block that is triggered when the app opens: Screen1.Initialize (if you
completed MoleMash in Chapter 3, you’ve seen this before). If you drag this event
block out and place blocks in it, those blocks will be executed immediately when the
app launches.

For this app, your Screen1.Initialize event handler will load the custom response
from the database by using the TinyDB.GetValue function. The blocks you’ll need for
this are shown in Table 4-5.

67Adding Behaviors to the Components

Adding Behaviors to the Components

Table 4-5. Blocks for loading the data back in when the app is opened

Block type Drawer Purpose

Screen1.Initialize Screen1 This is triggered when the app begins.

TinyDB1.GetValue TinyDB1 Get the stored response text from the database.

text (“responseMessage”) Text
Plug this into the tag socket of TinyDB.GetValue, making
sure the text is the same as that used in
TinyDB.StoreValue earlier.

text (“I’m driving right now, I’ll
contact you shortly”) Text

Plug this into the valueIfTagNotThere slot of
TinyDB.GetValue. This is the default message that should
be used if the user has not yet stored a custom response.

set ResponseLabel.Text to ResponseLabel Place the retrieved value in ResponseLabel.

How the blocks work

Figure 4-6 shows the blocks. To understand them, you must envision a user opening
the app for the first time, entering a custom response, and opening the app
subsequent times. The first time the user opens the app, there won’t be any custom
response in the database to load, so you want to leave the default response in the
ResponseLabel. On successive launches, you want to load the previously stored
custom response from the database and place it in the ResponseLabel.

Figure 4-6. Loading the custom response from the database upon app initialization

When the app begins, the Screen1.Initialize event is triggered. The app calls the
TinyDB1.GetValue with a tag of responseMessage, the same tag you used when you
stored the user’s custom response entry earlier. If there is data in the TinyDB with a tag
of responseMessage, it is returned and placed in the ResponseLabel.

However, there won’t be data the first time the app is launched; this will be the
case until the user types a custom response. To handle such cases, TinyDB1.GetValue
has a second parameter, valueIfTagNotThere. If no data is found, the value in
valueIfTagNotThere is used instead. In this case, “I’m driving right now, I’ll contact you
shortly,” the default value, is placed into ResponseLabel.

68 Chapter 4: No Texting While Driving

Chapter 4, No Texting While Driving

Test your app To test this behavior, you need to restart your
app to see if the data is truly stored persistently and
retrieved correctly. In live testing, you can restart the app
by changing some component property in the designer,
such as the font size of a Label. This will cause the app to
reload and Screen.Initialize to be triggered. Of course,
you can also test the app by actually building it and
installing the .apk file on your phone. Once the app is on
your phone, launch it, type a message for the custom
response, close the app, and then reopen it. If the message
you entered is still there, things are working correctly.

SPEAKING THE INCOMING TEXTS ALOUD

In this section, you’ll modify the app so that when you receive a text, the sender’s
phone number, along with the message, is spoken aloud. The idea here is that when
you’re driving and hear a text come in, you might be tempted to check the text even if
you know the app is sending an auto-response. With text-to-speech, you can hear the
incoming texts and keep your hands on the wheel.

Android devices provide text-to-speech capabilities, and App Inventor provides a
component, TextToSpeech, that will speak any text you give it. Note that the “Text” in
TextToSpeech refers to a sequence of letters, digits, and punctuation, not an SMS text.

The TextToSpeech component is very simple to use. You just call its Speak function
and plug in the text that you want spoken into its message slot. For instance, the
blocks shown in Figure 4-7 would speak the words, “Hello World.”

Figure 4-7. Blocks for speaking “Hello World” aloud

For the No Texting While Driving app, you’ll need to provide a more complicated
message to be spoken, one that includes both the text received and the phone
number of the person who sent it. Instead of plugging in a static text object such as
the “Hello World” text block, you’ll plug in a join block. A commonly used function,
join, makes it possible for you to combine separate pieces of text (or numbers and
other characters) into a single text object.

You’ll need to make the call to TextToSpeech.Speak within the
Texting.MessageReceived event handler you programmed earlier. The blocks you
programmed previously handle this event by setting the PhoneNumber and Message

69Adding Behaviors to the Components

Adding Behaviors to the Components

properties of the Texting component appropriately and then sending the response
text. You’ll extend that event handler by adding the blocks listed in Table 4-6.

Table 4-6. Blocks for speaking the incoming text aloud

Block type Drawer Purpose

TextToSpeech1.Speak TextToSpeech1 Speak the message received aloud.

join Text Concatenate (join together) the words that will be spoken.

text (“SMS text received from”) Text The first words spoken.

get number Drag in from when block The number from which the original text was received.

text (“.The message is”) Text Put a period in after the phone number and then say, “The
message is.”

get messageText Drag in from when block The original message received.

How the blocks work

After the response is sent, the TextToSpeech1.Speak function is called, as shown at the
bottom of Figure 4-8. You can plug any text into the message socket of the
TextToSpeech1.Speak function. In this case, join is used to build the words to be
spoken—it concatenates (or joins) together the text “SMS text received from” and the
phone number from which the message was received (get number), plus the text “.The
message is,” and finally the message received (get messageText). So, if the text “hello”
was sent from the number “111-2222,” the phone would say, “SMS text received from
111-2222. The message is hello.”

Figure 4-8. Speaking the incoming text aloud

Test your app You’ll need a second phone to test your app.
From the second phone, send a text to the phone running the
app. Does the phone running the app speak the text aloud?
Does it still send an automated response?

70 Chapter 4: No Texting While Driving

Chapter 4, No Texting While Driving

ADDING LOCATION INFORMATION TO THE RESPONSE

Check-In apps help people track one another’s location. There are major privacy
concerns with such apps, one reason being that location tracking kindles people’s
fear of a “Big Brother” apparatus that a totalitarian government might set up to track
its citizens’ whereabouts. But apps that use location information can be quite useful.
Think of a lost child, or hikers who’ve gone off the trail in the woods.

In the No Texting While Driving app, you can use location tracking to convey a bit
more information in the auto-response to incoming texts. Instead of just “I’m driving,”
the response message can be something like, “I’m driving and I’m currently at 3413
Cherry Avenue.” For someone awaiting the arrival of a friend or family member, this
extra information can be helpful.

App Inventor provides the LocationSensor component for interfacing with the
phone’s GPS (or Global Positioning System). Besides latitude and longitude
information, the LocationSensor can also tap into Google Maps to provide the driver’s
current street address.

It’s important to note that LocationSensor doesn’t always have a reading. For this
reason, you need to take care to use the component properly. Specifically, your app
should respond to the LocationSensor.LocationChanged event handler. A
LocationChanged event occurs when the phone’s location sensor first gets a reading,
and when the phone is moved to generate a new reading. Using the blocks listed in
Table 4-7, our scheme, shown in Figure 4-9, will respond to the LocationChanged event
by placing the current address in a variable we’ll name lastKnownLocation. Later, we’ll
change the response message to incorporate the address we get from this variable.

Table 4-7. Blocks to set up the location sensor

Block type Drawer Purpose

initialize global variable
(“lastKnownLocation”) Variables Create a variable to hold the last read

address.

text (“unknown”) Text Set the default value in case the phone’s
sensor is not working.

LocationSensor1.LocationChanged LocationSensor1 This is triggered on the first location
reading and every location change.

set global lastKnownLocation to
Drag from initialize
global block. Set this variable to be used later.

LocationSensor1.CurrentAddress LocationSensor1 This is a street address such as “2222
Willard Street, Atlanta, Georgia.”

71Adding Behaviors to the Components

Adding Behaviors to the Components

Figure 4-9. Recording the phone’s location in a variable each time the GPS location is
sensed

How the blocks work

The LocationSensor1.LocationChanged event is triggered the first time the sensor
gets a location reading and then each time the device is moved so that a new reading
is generated. The LocationSensor1.CurrentAddress function is called to get the
current street address of the device and store it in the lastKnownLocation variable.

Note that with these blocks, you’ve finished only half of the job. The app still needs
to incorporate the location information into the auto-response text that will be sent
back to the sender. You’ll do that next.

SENDING THE LOCATION AS PART OF THE RESPONSE

Using the variable lastKnownLocation, you can modify the Texting1.MessageReceived
event handler to add location information to the response. Table 4-8 lists the blocks
you’ll need for this.

Table 4-8. Blocks to display location information in the auto-response

Block type Drawer Purpose

join Text concatenate some text together

ResponseLabel.Text MessageTextBox This is the (custom) message in the text box.

text (“My last known location is:”) Text This will be spoken after the custom message (note the
leading space).

get global lastKnownLocation LocationSensor This is an address such as “1600 Pennsylvania Ave NW,
Washington, DC 20500.”

How the blocks work

This behavior works in concert with the LocationSensor1.LocationChanged event and
the variable lastKnownLocation. As you can see in Figure 4-10, instead of directly
sending a message containing the text in ResponseLabel.Text, the app first builds a

72 Chapter 4: No Texting While Driving

Chapter 4, No Texting While Driving

message by using join. It combines the response text in ResponseLabel.Text with the
text “My last known location is:” followed by the variable lastKnownLocation.

Figure 4-10. Including location information in the response text

The default value of lastKnownLocation is “unknown,” so if the location sensor
hasn’t yet generated a reading, the second part of the response message will contain
the text, “My last known location is: unknown.” If there has been a reading, the second
part of the response will be something like, “My last known location is: 1600
Pennsylvania Ave NW, Washington, DC 20500.”

Test your app From the second phone, send a text to the phone
running the app. Does the second phone receive the response
text with the location information? If it doesn’t, make sure
you’ve turned GPS on in the Location settings of the phone
running the app.

The Complete App: No Texting While Driving
Figure 4-11 shows the final block configuration for No Texting While Driving.

73The Complete App: No Texting While Driving

The Complete App: No Texting While Driving

Figure 4-11. The complete No Texting While Driving app

Variations
Once you get the app working, you might want to explore some variations, such as
the following:

• Write a version that lets the user define custom responses for particular
incoming phone numbers. You’ll need to add conditional (if) blocks that check
for those numbers. For more information on conditional blocks, see Chapter 18.

• Write a version that sends custom responses based on whether the user is
within certain latitude/longitude boundaries. So, if the app determines that
you’re in room 222, it will send back “Bob is in room 222 and can’t text right
now.” For more information on the LocationSensor and determining
boundaries, see Chapter 23.

• Write a version that sounds an alarm when a text is received from a number in
a “notify” list. For help working with lists, see Chapter 19.

74 Chapter 4: No Texting While Driving

Chapter 4, No Texting While Driving

Summary
Here are some of the concepts we covered in this tutorial:

• You can use the Texting component to both send text messages and process the
ones that are received. Before calling Texting.SendMessage, you should set the
PhoneNumber and Message properties of the Texting component. To respond to
an incoming text, program the Texting.MessageReceived handler.

• The TinyDB component is used to store information persistently—in the
phone’s database—so that the data can be reloaded each time the app is opened.
For more information on TinyDB, see Chapter 22.

• The TextToSpeech component takes any text object and speaks it aloud.

• You can use join to piece together (or concatenate) separate text items into a
single text object.

• The LocationSensor component can report the phone’s latitude, longitude, and
current street address. To ensure that it has a reading, you should access its
data within the LocationSensor.LocationChanged event handler, which is
triggered the first time a reading is made and upon every change thereafter. For
more information on the LocationSensor, see Chapter 23.

If you’re interested in exploring SMS-processing apps further, check out the
Broadcast Hub app in Chapter 11.

75Summary

Summary

	No Texting While Driving
	What You’ll Learn
	Getting Started
	Designing the Components
	Adding Behaviors to the Components
	The Complete App: No Texting While Driving
	Variations
	Summary

